1.有關平行與垂直(線線、線面及" />
立體幾何考題正朝著“多一點思考,少一點計算”的發展。從歷年的考題變化看, 以簡單幾何體為載體的線面位置關系的論證,角與距離的探求是常考常新的熱門話題。
知識整合
1.有關平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復遇到的,而且是以各種各樣的問題(包括論證、計算角、與距離等)中不可缺少的內容,因此在主體幾何的總復習中,首先應從解決“平行與垂直”的有關問題著手,通過較為基本問題,熟悉公理、定理的內容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉化的思想,以提高邏輯思維能力和空間想象能力。
2. 判定兩個平面平行的方法:
(1)根據定義--證明兩平面沒有公共點;
(2)判定定理--證明一個平面內的兩條相交直線都平行于另一個平面;
(3)證明兩平面同垂直于一條直線。
3.兩個平面平行的主要性質:
⑴由定義知:“兩平行平面沒有公共點”。
⑵由定義推得:“兩個平面平行,其中一個平面內的直線必平行于另一個平面。
⑶兩個平面平行的性質定理:”如果兩個平行平面同時和第三個平面相交,那么它們的交線平行“。
⑷一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面。
⑸夾在兩個平行平面間的平行線段相等。
⑹經過平面外一點只有一個平面和已知平面平行。
以上性質⑵、⑷、⑸、⑹在課文中雖未直接列為”性質定理“,但在解題過程中均可直接作為性質定理引用。
鄭州華章MBA培訓中心
咨詢電話:0371-66961135
報名時間:8:00-18:00,周末不休
校址:鄭州二七區大學路金源大廈(鄭州大學南校區東門對面)8樓815辦公室
公交路線:乘4、63、66、82、111、201、217、256、317、903、904、906、Y806、Y815路公交車到大學路桃源路站下車