2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的余角相等
" />
華章教育精心為各位考生總結出來了所有數學考試里面需要用到的數學公式,希望可以幫助到各位考生。
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的余角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大于第三邊
16 推論 三角形兩邊的差小于第三邊
17 三角形內角和定理 三角形三個內角的和等于180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等于和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大于任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理(sas) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( asa)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(aas) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(sss) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(hl) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
無相關信息 |
鄭州華章MBA培訓中心 |
下一篇: 備考2015mba聯考-最全MBA數學必會公式集合2 華章總結 |