和差化積 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2" />
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些數(shù)列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑
余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角
圓的標(biāo)準方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標(biāo)
圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
拋物線標(biāo)準方程 y2=2px y2=-2px x2=2py x2=-2py
弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r
數(shù)學(xué)公式
開放分類: 數(shù)學(xué)、概念
數(shù)學(xué)公式,是表征自然界不同事物之?dāng)?shù)量之間的或等或不等的聯(lián)系,它確切的反映了事物內(nèi)部和外部的關(guān)系,是我們從一種事物到達另一種事物的依據(jù),使我們更好的理解事物的本質(zhì)和內(nèi)涵。
如一些基本公式
拋物線:y = ax* + bx + c
就是y等于ax 的平方加上 bx再加上 c
a > 0時開口向上
a < 0時開口向下
c = 0時拋物線經(jīng)過原點
b = 0時拋物線對稱軸為y軸
還有頂點式y(tǒng) = a(x-h)* + k
就是y等于a乘以(x-h)的平方+k
h是頂點坐標(biāo)的x
k是頂點坐標(biāo)的y
一般用于求最大值與最小值
拋物線標(biāo)準方程:y^2=2px
它表示拋物線的焦點在x的正半軸上,焦點坐標(biāo)為(p/2,0) 準線方程為x=-p/2
由于拋物線的焦點可在任意半軸,故共有標(biāo)準方程y^2=2px y^2=-2px x^2=2py x^2=-2py
圓:體積=4/3(pi)(r^3)
面積=(pi)(r^2)
周長=2(pi)r
圓的標(biāo)準方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標(biāo)
圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
2015年MBA備考英語-詞匯練習(xí)五 2015年MBA備考英語-詞匯練習(xí)四 2015年MBA備考英語-詞匯練習(xí)三 2015年MBA備考英語詞匯練習(xí)二 2015年MBA備考英語詞匯練習(xí)一 備考2015mba聯(lián)考-最全MBA數(shù)學(xué)必會公式集合11 備考2015mba聯(lián)考-最全MBA數(shù)學(xué)必會公式集合10 備考2015mba聯(lián)考-最全MBA數(shù)學(xué)必會公式集合9 備考2015mba聯(lián)考-最全MBA數(shù)學(xué)必會公式集合8 最全MBA數(shù)學(xué)必會公式集合(五)----2015mba考試 |
鄭州華章MBA培訓(xùn)中心 |
下一篇: 備考2015mba聯(lián)考-最全MBA數(shù)學(xué)必會公式集合8 |